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AN ABSTRACT NONLINEAR 
VOLTERRA EQUATION 

BY 

G U S T A F  G R I P E N B E R G  

ABSTRAC~ 

The  existence, uniqueness,  regularity and dependence  upon data of solutions of 
the abstract Volterra equation 

fo u(t)+ a(t - s)A(u(s))ds ~ f(t), t --> 0 

are studied in a real Banach space. The  nonlinear  operator  A is assumed to be 
m-accret ive and the assumptions  on the kernel a do not exclude the possibility 
that lim,_.o+ a ( t )  = + ~ .  

1. Introduction and statement of results 

The purpose of this paper is to study the existence, uniqueness, regularity and 

dependence upon data of solutions of the Volterra equation 

fo (1.1) u ( t ) +  a ( t  - s ) A ( u ( s ) ) d s  ~ f ( t ) ,  t E R § = [0,~) 

in a real Banach space X. It is assumed that A is essentially an m-accretive 

operator in X (see [2] for definitions), but the main point of interest is that the 

assumptions on a that we use, do not exclude the possibility that lim,~§ a( t )  = 

+ ~. Hence it is not in general possible under our assumptions to reduce (1.1) to 

an initial value problem of the form 

{ d u / d t + A ( u ) ~ G ( u ) ,  t ~ R  +, 

u ( 0 )  = x 

where G satisfies certain Lipschitz conditions, cf. [6]. Therefore the results of 

this paper generalize those of [6] and [7]. Under assumptions on the kernel that 
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are related to the ones used here (but which also allow the kernel to be 
operator-valued in a specific way) the problem of existence of solutions of (1.1) 
has been studied in [3], in a Hilbert space setting when A is the subdifferential of 
a convex function. For other existence results on (1.1) when X is a Hilbert space, 
that are not covered by this paper, see [1], [9], [10], [14]. Equation (1.1) has also 
been studied in [11], [12], [13] under  different assumptions. 

Our first result is 

THEOREM 1. Assume that 

X is a real reflexive Banach space 

(1.2) 
with locally uniformly convex dual X*, 

A = B + o2IwhereB C X  x Xism-accretive, 

(1.3) 
o2 is a real number and I is the identity mapping, 

(1.4) a ( t ) = b ( t ) + c ( t ) ,  t>Owhere 

(1.5) b E L~o~(R§ R)  n C'((0, ~); r ) ,  

(1.6) b ( t ) > 0 and b is nonincreasing when t > 0, 

(1.7) log(b(t)) is convex on (0, ~), 

(1.8) c E ACtor(R+; R),  c(0) = 0, 

(1.9) c ' ~  BV, o~(R+; R),  

(1.10) f E  '" *" W,o (R , x ) ,  

(1.1i) f '  E BV,o~(R *; X),  

(1.12) f(o) D(B). 

Then there exists a unique function 

(1.13) 

such that 

(1.14) 

where 

(1.15) 

u ~ C(R§ ~D(B)) O BVjo~(R§ D(B) )  

f0 t u(t )+ a ( t - s ) w ( s ) d s  = f(t) ,  t E R * ,  

w L (R +; X) 
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is such that 

(1.16) [u(t), w ( t ) -  tou(t)] (E B, a.e. t E R +. 

I f  lim,_o+a(t)< +oo then it is not necessary to assume that X*  is locally 

uniformly convex. 

Here f E W[olc(R +; X)  means that f ( t )  = f(0) + f'of'(s)ds, f '  ~ L]o~(R § X), and 

D ( B )  = {x I[x, y] E B for some y E X}. 

In some cases when we cannot show that there exists a solution of (1.1) in the 

sense (1.13)-(1.16) we can at least show that the solutions of certain approximat- 

ing equations converge to a function that may be considered to be a "weak"  

solution of (1.1). 

THEOREM 2. Assume that (1.3)-(1.10) hold and that 

(1.17) X is a real Banach space, 

(1.18) f(O) E D(B) .  

I f  u~, ;t > O, is the solution of the equation 

fo' (1.19) u. ( t )+ a(t  - s)(B.(u~(s))+ wu.(s))ds = f(t) ,  t E R § 

then there exists a function 

(1.20) u ~ C(R+; D ( B ) )  

such that 

(1.21) u~ ~ u as A ~ 0 uniformly on compact subsets of R + 

Moreover, if (1.11) holds and 

(1.22) sup [I B,  ff(o))ll < oo 
A > 0  

then (1.13) holds. I f  the assumptions of Theorem 1 hold, then the function u is the 

solution satisfying (1.13)-(1.16). 

The Yosida approximation B~ is defined by B,  = A-1(1 - (I  + AB) -1) and is 

Lipschitz-continuous if B is m-accretive. Note that (1.12) implies (1.22), but the 
converse need not hold unless X is reflexive ([[. II denotes the norm in X).  

The last theorem shows how the solutions depend upon the function f. 
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THEOREM 3. A s s u m e  that (1.3)-(1.9) and (1.17) hold. Then there exists a 

nondecreasing, continuous funct ion k on R +, k (0) = 1, such that if  

1,1 , X ) ,  i 1, 2, (1.23) f, E W,oc(R § = 

(1.24) f , ( O ) E D ( B ) ,  i = 1,2 

and u,, i = 1, 2 are the l imit[unct ions corresponding to ~ (that exist by Theorem 2), 

then 

I] u , ( t )  - u2(t)l I <= k (t) (11 fl(0) - f2(0)]] 
(1.25) 

fo ) + rlf'l(s)-f (s)llds , t R + 

Moreover, i f  c =- 0 and ~o = O, then k =- 1. 

Observe that the assumptions (1.5)-(1.7) are satisfied if b is locally integrable 

and completely monotone. Thus one may, for example, take a (t) = t -a, t > O, 

0 < ~ < 1, in (1.1), and in this case (1.1) corresponds to a differential equation of 

fractional order 1 -  a. 

For results on the asymptotic behaviour of the solutions of (1.1), see [4] (but 

note that the assumption lim,~o§ a ( t ) <  + ~ that is made in [4] is not necessary 

for the proof as long as one knows that the functions u, converge). 

2. Proof of Theorem I 

First we establish some results concerning linear Volterra integral equations 

that will be used later. Define the function b. (n is a positive integer) by 

b . ( t )  = b( t  + n-l) ,  t E R § and the function a, by a . ( t )  = b . ( t ) +  c( t ) ,  t ~ R § 

Let p, and P. be the solutions of the equations 

fo (2.1) b.(O)p,( t )  = - b ' . ( t ) -  b ' ( t  - s )p . ( s )ds ,  t E R + 

and 

fo 
t 

(2.2) b. (O)P.( t )  = - a ' ( t ) -  a ' ( t  - s )P . ( s )d s ,  t ~ R § 

LEMMA 2.1. A s s u m e  that (1.4)-(1.9), (2.1) and (2.2) hold. Then 

(2.3) p,  ~ B V ( R +; R )  is nonnegative and nonincreasing on R +, 

there exists a nonnegative and nonincreasing funct ion 
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(2.4) p ~ L ~ o ~ ( R + ; R ) s u c h t h a t b . ( O ) - l p , - - - ~ p i n L l ( O , T ; R ) a s n - - - ~ o o  

fo f o r a l l T > O a n d b ( O ) - ~ b ( t ) +  p ( t - s ) b ( s ) d s = l ,  t > 0 ,  

P. = p.  - b.(O)q, where q. E B V ~ ( R +  ; R )  

(2.5) and there exists q ~ B V , ~ ( R  +; R )  such that 

I q. (0) - q (0) 1 + var(q. - q ; [0, T]) ~ 0 as n ~ ~ for all T > O. 

PROOF. Let R .  be the solution of the equation 

Io (2.6) R ~ ( t ) + g  b ( t - s ) R ~ ( s ) d s = l ,  t ~ R  § g > O ,  

It follows from [8, lines (1.8)-(1.10)] that R ,  is positive, decreasing and satisfies 

the inequality 

( fo )' (2.7) R~(t)<= l + / x  b(s )ds  , t E R  +. 

Hence it follows from Helly's theorem that there exists a nonnegative, nonin- 

creasing function p such that 

(2.8) lim Iz ,R~.( t )  = p ( t ) ,  t > 0 for some sequence {/x,}. 

1 + ,  To see that we also have p E L~o~(R , R )  we have only to note from (2.6) that 

f/ (fo ), sup I~R~(s)ds  <-_ e zT x e - % ( s ) d s  , T > O  

for every x >0 .  From this inequality we also conclude that f ' o l x .R . . ( s )d s  

converges as g.--* ~ and to see that the limit function is b(0)-l+ f 'op(s)ds  we 

recall that 

fo" fo' ( f f  )_1 e -~' t zR , , ( s )dsdt  = x 2 e - = b ( s ) d s  + x2/lz , x > O. 

If we now let /x. ~ oo in (2.6) and use (2.7) and (2.8) we conclude that 

fo' (2.9) b(O)- 'b( t )  + p ( t  - s ) b ( s ) d s  = 1, t > O. 

If we apply this argument to the function b, and differentiate the resulting 

equation (2.9) we see that (2.3) holds (the only nontrivial part of (2.3) is the 
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statement that p. is nonincreasing). By the argument above we know that the 

function p exists and has the desired properties and we have only to show that 

the functions b,(O)-lp, converge to p. This is easily done in the case when 

lim,~+ b( t )  < + oo. If lim,_.o+ b( t )  = + ~, then we can apply the same argument as 

above and use the fact (see [8, line (1.10)]) that by (1.6) and (2.1) 

fO 
t 

b,(O)-' p . ( s )d s  <- b . ( t ) - ' -  b,(O)-', t E R  § 

To establish (2.5) we define the function d, by 

(2.10) d.(t)=b.(O)-'(c'(t)+ fo'C'(t-s)p.(s)ds ), teR + 

and let e. be the solution of the equation 

fo (2.11) e . ( t )  = d . ( t ) -  d . ( t  - s )e . ( s )ds ,  t E R+. 

It is not difficult to see that 

fo' (2.12) P. ( t )  = p . ( t )  - p , ( t  - s ) e . ( s )ds  - e . ( t ) ,  t e R +. 

From (1.9), (2.3) and (2.4) we see that d, E BV~o~(R+; R )  and 

lim (1 d,, (0) - d. (0)[ + var(dm - d, ; [0, TI) )  = 0, T > 0 

and hence it is straightforward to deduce from (2.11) that the same statement is 

true for the function e.. But then (2.5) follows from (2.4) and (2.12), and the 

proof of Lemma 2.1 is completed. 

Let B, = A-1(1 - (I + AB)-I). Since B is assumed to be m-accretive it follows 

that B, is Lipschitz-continuous (with Lipschitz constant 2/h). This implies that 

there exists a unique solution of the equation 

Io' (2.13) u~.( t )  + a . ( t  - s ) A , ( u ~ . ( s ) ) d s  = f ( t ) ,  t ~_ R § 

where we use the notation AA = B, + ~oI. By (1.4), (1.5), (1.8)-(1.11) and (2.13) 

u~. is locally Lipschitz-continuous, differentiable a.e. and 

Io' u L . ( t ) +  a.(O)A~(u,~.( t))+ a ' ( t  - s )A , (u ,~ . ( s ) )ds  = f ' ( t ) ,  a.e. t e R +. 
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We solve a,  (0)A~ (u~.. (t)) from this equation using the (resolvent) equation (2.2) 

(recall that a , (0 )=  b.(0)) and we obtain (see (2.5)) 

fo ' u' . , . ( t)+ p . ( t  - s)u'~,.(s)ds + b.(O)B.(u. , . ( t))  

(2.14) = - b, (0)om~., (t) + b, (0) fo' q . ( t  - s)u'~, . (s)ds + f ' ( t )  

( '  P , ( t  - s ) f ' (s )ds  + 
Jo 

def 
= F~,,(t), a.e. t E R + 

From this equation we are going to derive the a priori estimates that we need and 

it will also be used in showing that the functions u~,. converge as n ~ ~, A ~ 0. 

If x, y E X, define (11" II is the norm in X) 

[x, y]+ = inf X-'(lly + Xx II- Ily II), [x, y]_ = - [ -  x ,y]+.  
A > 0  

The accretivity of B implies that BA is accretive and this means that 

(2.15) [B~(x , ) -B~(x2 ) , x , - x2]§  x ~ , x z E X .  

We also note that if v : [0, T] ~ X is absolutely continuous and differentiable 

a.e., then 

(2.16) d /d t l l v ( t ) l l=[v ' ( t ) , v ( t ) ]+=[v ' ( t ) , v ( t ) ]_ ,  a.e. t E [ 0 ,  T] 

(see [5, lemma 2.16]). Finally we obviously have 

[x, x 1+ = [x, x]_  = II x II, 

[xl + x2, Y l+Z[x l ,  yl+ +[x2, y]+, 

[x,y]+-<-l lxl l .  

Let h > 0  be arbitrary. By (2.14)-(2.16) we have 

d/ds II u~,(s + h ) -  u~,.(s)ll + p.(0)ll u~,.(s + h ) -  u,~.(s)[I 

fo �9 - Ip.(s  + h - r ) - p . ( s  - r)l II u;. .0")lld, 

< II F~. .(s  + h ) -  f~ . . ( s ) l l  + p.(0)l]  u~,.(s + h ) -  u~.(s)- hu'~,.(s)ll 
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fs s*h + Ilhp,(O)u'~,~ p , ( s  + h - 7)u;., (~-)dTII, a.e. s E R § 

We integrate this inequality over (0, t), divide by h and let h ---* 0. Then it follows 
from (2.3) and the dominated convergence theorem that 

fo II u L,(t)ll + p. ( t  - s)llu'~,,(s)llds 

(2.17) 
<=lluL,(o)il+var(F,,,;[o,t]), a.e. t E R  + 

it is clear from (2.13) and (2.14) that 

(2.18) Ilu'~,.(O)tt<-b.(O)(lIB~(f(O))ll+lwtllf(O)ll)+llJ:'(O)ll 

(we assume that lim,~o+f'(t)= f'(O)), and that 

)fo' var(F~,.;[O,t])<=b,(O ( l~o[+lq.(O)[+var(q. ;[o , t -s l ) ) l tu '~ , , (s ) l lds  

(2.19) + varff'; [0, tl) § (llf'(0)ll + varff'; [0, t - s ] ) ) (p . ( s )  + b.(O)lq.(s)l)as, 

t E R  § 

Using equation (2.1) and integrating (that is, we "solve" II u 1,. (t)ll from the left 
side of (2.17) with the aid of (2.1), the integration will allow us to keep the 

inequality since b, ( t )>O) ,  we conclude from (2.17)-(2.19) that 

fo' II u ",.(s)l[ds <= fo' b.(t  - s)(l[ B ,  (f(0))ll +1,,, I IIf(O)ll 

(2.20) + (I o~ I + Iq-(0)1+ var(q, ;[0, s - r]))ll u '~., (r)lldr 

fo fo + (llf'(0)ll + var(.f'; [0, s - ~]))l q,(~')l a , ) a s  + (llI'(0)ll + var(f'; [0, sl))as, 

t E R  +. 

By (1.11), (2.5), (2.20) and the fact that (1.12) implies that (1.22) holds there exist 

continuous functions hi and h2 so that 

fo'llu'~..(s)llds<-_h,(t)fo'b(t-S)fo'llu'~..(,)lla,as+h2(t ), t E R  +. 

Since b E L~oc(R§ R)  we conclude from this inequality that 
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l' 
(2.21) sup II u L. (s)llds < oo, t ~ R +. 

~, > O , n  ~ 1 3 0  

F rom  (1.11), (2.4), (2.5), (2.14), (2.17)-(2.19) and (2.21) we deduce  that 

(2.22) sup IIB~(u~.(s))ll<0% t E R + 
O~s~t,k>O,n~l 

Now we can proceed  to prove  that the functions u~,. converge  when A ~ 0, 

n ~ oo. It is easily seen (since B~ is Lipschitz-continuous)  that u~,. ~ u~ when 

n ~ 0% where  u~ is the solution of equat ion (1.19), but  we want  to show that the 

convergence  is uni form with respect  to A. Let  m, n ~ 1 be integers and let )t > 0 

be arbi trary.  By (2.14) we have 

B~ (u~. (t)) - B~ (u~,. (t)) = - b. (0)-l((u ~.. ( t)  - u ~,,., (t)) + p.  (0) (ux,. ( t)  - u~,,. (t)) 

fo' + (u~.. (t  - s )  - u.,., (t - s ) )dp .  (s))  + ( - ~o + q.  (0)) (uA,. (t)  - u.,,. (t)) 

+ fo' (u , , . ( t  - s )  - ux,,.(t - s ) ) d q . ( s )  + (b,. (0) - 1 -  b. (O)-~)u~, . ( t )  

fo' (b , . (O)- 'P. . ( t  - s ) -  b . (O) - lP . ( t  - s ) ) (u '~ , r . (S ) -  f ' ( s ) ) d s  + 

a.e. t E R  +. 

H e n c e  it follows f rom (2.15) and (2.16) that 

b.(O)-~d/dtl l  u A . . ( t ) -  u~.., (t)l[ + b.(0) -~ fo' p.(t- s)d/ds [I u~,.(s) ux,.. (s )llds 

fo' <-(I,ol+lq.(O)l)llu.,.(t)-U.,r.(t)ll+ I lu . , . ( t - s ) -u , . . . ( t - s ) l l l~ . (s ) t  

(2.23) 
+ i b.,(o) - 1 -  b.(0)- ' I  llu Lm(t)ll 

fo' I b'(O)-~P'(t - s ) -  b.(0)- lP. ( t  - s)3 I1 u ~ , . ( s ) -  f'(s)llas + 

%fF~ .... (t), a.e. t ~ R § 

Proceeding  in the same way as when we der ived (2.20) we get 

fo' I lu ,~.( t ) -  u~..,(t)ll <- b . ( t  - s ) f~  . . . .  (s)ds ,  t e R +. 
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From this inequality combined with (2.4), (2.5), (2.21) and (2.23) we are able to 

conclude that 

 imf 0' Ilu~,,(s)- u ,.(s)llds = 0 uniformly with respect to A for every t E R +. 

But since it follows from (2.13) and (2.22) that the functions u~,, are equicontinu- 

ous on every interval [0, t] we deduce that 

u~,, ~ u, as n ~ ~ uniformly on [0, T] for every T > 0 and 

(2.24) 
uniformly with respect to A. 

We may apply [6, theorem 3] to equation (2.14) and it follows that for every n 

and every T > 0 

lim ]lu,~.(t)- u~,.(t)ll = 0 uniformly on [0, T]. 

If we combine this result with (2.24) we see that there exists a function 

u E C(R§ X)  such that 

(2.25) u~ ~ u as )t ~ 0 uniformly on [0, T] for every T > 0. 

From (2.21), (2.24) and (2.25) we deduce that u E BVIoc(R§ To see that 

u ( t ) E D ( e ) ,  t E R § we have only to note that ux(t) = J,(u~(t))+AB~(u~(t)) 
where J~(ux(t))= (I + An)-lux(t)E D(B)  and apply (2.22), (2.24) and (2.25). 

In view of (2.22), (2.24) and the fact that X, and hence also L2(0, T; X), T > 0, 

is reflexive there exists a function w E Llo~(R§ such that 

(2.26) A, , (u , . )  ---~ w (weakly) in L2(0, T ; X )  as )t~,--*0 for every T > 0  

for some sequence {A=}. By (1.19), (2.25) and (2.26) it is clear that (1.14) holds. If 

lim,_.o§ a(t) < + oo then it follows from (1.4)-(1.8), (1.11), (1.14) and (1.15) that u 

is locally Lipschitz-continuous on R § and hence differentiable a.e. To see that 

(1.16) holds we can proceed in the same manner as in the proof of [2, theorem III 

2.2] (see also the proof of [7, theorem 2]). We have only to use (2.14), the 

equation one gets from (2.2) by letting n--* 0% and to observe that 

fo' P.(t - s)(u'A,.(s)- f'(s))ds -"~ fo' (u(t - s ) -  u(t))dP(s) 

fo +P( t ) (u ( t ) - u (O) ) -  P( t - s ) f ' ( s )ds ,  n--,oo, A--~O, t > O ,  
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where P ( t )  = b ( O ) ( p ( t ) -  q( t ) ) ,  t > O. 

In the case when lim,_.o+a(t)= + oo we assume that X* is locally uniformly 

convex. This implies that the duality mapping F : X ~ X *  defined by 

f ( x  ) = { x *  I<x, x *> = II x II 2 = II x *11. ~} 

is singlevalued and continuous. Recall that 

(2.27) [], (u~ (t)), B, (u, (t))] E B, t E R + 

and that J~ (u~ (t) = u, (t) + AB, (u~ (t)). Therefore it follows from (2.22) and (2.25) 

that J~ (u,) ~ u as A ~ 0 uniformly on [0, T] for every T > 0. But then we also 

have for any function v E L~o~(R+;X) by the continuity of F 

(2.28) F ( J ~ ( u , ) - v ) ~ F ( u - v )  as A ~ 0  in L 2 ( O , T ; X  * ) f o r e v e r y  T > 0 .  

As it is easily seen that the operator /3  CL2(0, T; X ) •  L2(0, T ; X )  defined by 

[v, z] ~ /3  if [v(t), z(t)] E B a.e. t E [0, T] is m-accretive and so also maximal 

accretive we conclude from (2.25)-(2.28) that (1.16) holds. 

Finally we consider the question of uniqueness. Assume that we have two 

solutions. Subtracting one from the other we see that we have to consider the 

equation 

(2.29) v ( t ) +  a ( t  - s ) z ( s ) d s  = O, t ~ R +, 

where z E LI,~(R +; X) and 

(2 .30)  [ z ( t ) , v ( t ) l + e - I o ~  IIv(t)ll, a.e.  t e R  + 

Since we assume that v # 0 we may without loss of generality assume that v # 0 

on [0, T] for any T > 0 .  

Assume that l im,~o+a(t)< + oo. Then we can differentiate (2.29) and solve z 

from the resulting equation and we obtain for any integer n 

fo v ' ( t ) + p , ( O ) v ( t ) +  v ( t  - s ) d p , ( s ) +  b(0)z (t) 

fo' = (p, ( t  - s ) -  b(O)p(t - s ) )v ' ( s )ds  + b(O)q(O)v(t) 

fo' + b(O) v ( t  - s )dq(s ) ,  a.e. t E R +. 

Combining this equation with (2.3), (2.4), (2.16), (2.29) and (2.30) and letting 
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n--+ ~ we conclude that  we must have v ( t ) =  0, t ~ R § 

Next  we assume that  lim,_,o§ a (t) = + oo. F rom (2.4), (2.29) and an integrat ion 

by parts  we see that 

fo' P(t-  s)v(s)ds + fo' Z(s)ds 

(2.31) 

fo'fo' f/ + p( t -  s -  r)c'(r)dz z(z)drds = O, 

t ~ R  +. 

Let  the funct ion g be the solution of the equat ion 

(2.32) r 
= Jo p ( t -  s)c ' (s)ds,  t R + 

It follows f rom (1.9) and (2.32) that g E BV~o~(R+; R )  and f rom (2.31) and (2.32) 

that 

fo' fo' fo' fo" p ( t  - s ) v ( s ) d s  + z ( s )d s  = g ( t  - s) p ( s  - ~')v(z)drds, t E R + 

and so 

fO 
t 

d / d t  p ( t  - s ) v ( s )d s  + z ( t )  

(2.33) 

fofo = p ( t  - s - , ) v O ' ) d z d g ( s  ), a.e. t E R § 

We observe  that the ope ra to r  f---> d / d t f ' o p ( t -  s ) f ( s )  %r L ( f )  is the inverse of 

the ope ra to r  f~ f ' ob ( t -  s)f(s)ds. To prove  that L - ( I , , ,  I + 1)I is accret ive on 

L2(O, T ;  X )  we have only to show that 

oTIr.(s)lds<-_(l+(la,  l+ l ) ~ )  -I for  all /z > 0  

where  r,, ( t)  = - R ~7,, (t), t E R § (see (2.6)). To  see that this is the case we no te  

that  since r,, is positive we have 

foTlr.(,)las <= f [  <-- -1 
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and since r~, remains unchanged on [0, T] if we change the values of b when 

t > T (but so that (1.5)--(1.7) still hold) we may assume that fob(s)ds < 
(I oJ [ + 1) -~, if T is small enough. 

Since X*  is locally uniformly convex it follows that 

[x~+x2, Yl+=[x,,yl++[x2, y]+, xl, x2, yEL2(O,T;X), 

([ , ]§ defined on L2(0, T ; X ) •  L2(0, T;X) as above with the norm of X 

replaced by that of L2(0, T; X)). Therefore we can combine (2.30), (2.33) with 

the fact that L - (I to I + 1)1 is accretive on L2(0, T; X)  if T is small enough and 

conclude that we must have f'ollv(s)l]2ds = 0 for small t. This implies that the 

solution is unique and the proof of Theorem 1 is completed. 

3. Proofs of Theorems 2 and 3 

We are first going to establish Theorem 3 for the equation (1.19), then we are 

able to prove Theorem 2 and finally we complete the proof of Theorem 3. 

Assume that (1.23) and (1.24) hold and let ul,~.., u2,~,, and u~,~, u2,~ be the 

solutions of equations (2.13) and (1.19) respectively, corresponding to f~ and f2, 

and let v~,. = ul.~,. - u2,~. and f = fl - f2 .  From (2.3) and (2.14)--(2.16) we obtain 

in the same manner as in the proof of Theorem 1 

d/dtll v~,. (t)ll + fo' p.(t - s)d/ds II v~..(s)llds 

( fo _-<b.(0) (Io~l+lq.(0)l)llv~..(t)ll+ Ilv~..(t-s)lllclq.(s)l+lq.(t)lllf(o)ll 

+ fo' [q.(t-s)l [[f'(s)l]ds)+llf'(t)[[+ fo' p.(t-s)llf'(s)llds, a.e. t E R § 

If we use (2.1) and integrate, then we get 

f0 fo ( Ilv,..(t)ll--<llf(0)ll+ IIf'(s)llds+ b.O-s) (Itol+lqn(0)l)llv,..(s)ll 

+ ~o" II v~..(s- ,)ll, dq.(,)l + Iq.(s)l Ilf(0)[I + f[ Iq.(s-,)l IIf'(~)ll&)ds, 

t E R  +. 

It is straightforward to conclude from this integral inequality, (2.5) and (2.24) 

that there exists a nondecreasing, continuous function k on R § k (0)= 1 such 

that 
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(3.1) Ilul,At)-u2, (t)l; k(t)(llf (o)-/2(o)ll+ fo' ff (s)-f (s)Uds), + 
Now we proceed to the proof of Theorem 2. Let f satisfy (1.10) and (1.18). 

Then we can choose a sequence of functions {)r that satisfy (1.10)-(1.12) such 

that 

(3.2) f .  (0)---> f ( 0 )  as n ~ % 

(3.3) IIl'(s)-i'(s)lld --'O as n --> oo for every r > 0. 

Let u,~A be the solution of equation (1.19) corresponding to the function f,. By 

(3.1)-(3.3) we know that the functions u~.~ converge uniformly on [0, T] to u~ as 

n ---> oo for every T > 0 and this convergence is uniform with respect to A. On the 

other hand we know from the proof of Theorem 1 that for any fixed n, u,,~ 

converges uniformly on [0, T] for every T > 0 to a function in C(R§ D(B)) as 

A---)0. Combining these two observations we obtain (1.20) and (1.21). The 

remaining assertions of Theorem 2 have already been established in the proof of 

Theorem 1. 

To complete the proof of Theorem 3 we have only to note that (1.25) follows 

from (1.21) and (3.1). 
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